Securely Optimized (Ethereum) Smart
Contracts using Formal Methods

Elvira Albert

Joint work with: Samir Genaim, Pablo Gordillo, Alejandro
Hernandez-Cerezo, Enrique Martin Martin and Albert Rubio

COMPLUTENSE UNIVERSITY OF MADRID (SPAIN)

23rd International Conference on Software Engineering and
Formal Methods (SEFM’25)

November 12, 2025

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 1/44

INTRODUCTION

Elvira Albert (UCM) Securely Optimized Smart Contracts

INTRODUCTION

@ Ethereum blockchain: enormous growth
since first transaction in 2015

@ Verification and optimization of Ethereum
smart contracts raises considerable interest

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 3/44

INTRODUCTION

@ Ethereum blockchain: enormous growth
since first transaction in 2015

@ Verification and optimization of Ethereum
smart contracts raises considerable interest

v

@ Efficiency: huge volume of transactions, cost and
response time increased notably

» improve scalability to increase capacity
» optimize execution of smart contracts

@ Main properties

November 12, 2025

Elvira Albert (UCM) Securely Optimized Smart Contracts

3/44

INTRODUCTION

@ Ethereum blockchain: enormous growth
since first transaction in 2015

@ Verification and optimization of Ethereum
smart contracts raises considerable interest

v

@ Efficiency: huge volume of transactions, cost and
response time increased notably
» improve scalability to increase capacity
> optimize execution of smart contracts
@ Security: smart contracts public and immutable

» errors exploited by attackers, economic impact
» formal methods key to ensure security and provide

2 an safety guarantees

\
Qi)
a
7

@ Main properties

®)

«

November 12, 2025

Elvira Albert (UCM) Securely Optimized Smart Contracts

3/44

WHAT DO WE NEED TO KNOW ABOUT SMART
CONTRACTS?

@ Smart contract: open-source software on the
blockchain
» Not necessarily restricted to the classical
concept of contract
» Collection of secured stored functions
» All records of the transactions stored on a e
public and decentralized blockchain

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 4/44

WHAT DO WE NEED TO KNOW ABOUT SMART
CONTRACTS?

@ Smart contract: open-source software on the

blockchain
» Not necessarily restricted to the classical ®
concept of contract
» Collection of secured stored functions
» All records of the transactions stored on a e
public and decentralized blockchain

@ Ethereum Virtual Machine is used to run smart contracts

» Rather standard stack-based language
» Words of 256-bits
» Three memory regions

* QOperational stack
* Local memory
* Replicated storage

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 4/44

WHAT DO WE NEED TO KNOW ABOUT SMART
CONTRACTS?

@ Smart contract: open-source software on the

blockchain
» Not necessarily restricted to the classical ®
concept of contract p
» Collection of secured stored functions
» All records of the transactions stored on a e

public and decentralized blockchain
@ Ethereum Virtual Machine is used to run smart contracts

» Rather standard stack-based language
» Words of 256-bits
» Three memory regions

* QOperational stack
* Local memory
* Replicated storage

@ Relevant features for optimization:
» Gas-metered execution

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 4/44

Elvira Albert

urely Optimized Smart Contracts

GAS-METERED EXECUTION
@ Gas-limit. amount of gas allowed to carry out transaction

@ Price: gas priced in the cryptocurrencies (Ether).

GAS-METERED EXECUTION
@ Gas-limit. amount of gas allowed to carry out transaction

@ Price: gas priced in the cryptocurrencies (Ether).

@ EVM specification: provides precise definition of gas
consumed by each EVM bytecode instruction.

GAS-METERED EXECUTION
@ Gas-limit. amount of gas allowed to carry out transaction

@ Price: gas priced in the cryptocurrencies (Ether).

@ EVM specification: provides precise definition of gas
consumed by each EVM bytecode instruction.

@ Gas-model. instructions that require more computational or
storage, cost more (PUSH costs 3 and SSTORE 20.000)

GAS-METERED EXECUTION
@ Gas-limit. amount of gas allowed to carry out transaction

@ Price: gas priced in the cryptocurrencies (Ether).

@ EVM specification: provides precise definition of gas
consumed by each EVM bytecode instruction.

@ Gas-model. instructions that require more computational or
storage, cost more (PUSH costs 3 and SSTORE 20.000)

\f
ij} 300.000 —

GAS-METERED EXECUTION
@ Gas-limit. amount of gas allowed to carry out transaction
@ Price: gas priced in the cryptocurrencies (Ether).

@ EVM specification: provides precise definition of gas
consumed by each EVM bytecode instruction.

@ Gas-model. instructions that require more computational or
storage, cost more (PUSH costs 3 and SSTORE 20.000)

’
}3 300.000 — | 21.000 + 25.000 execution | —

GAS-METERED EXECUTION
@ Gas-limit. amount of gas allowed to carry out transaction
@ Price: gas priced in the cryptocurrencies (Ether).

@ EVM specification: provides precise definition of gas
consumed by each EVM bytecode instruction.

@ Gas-model. instructions that require more computational or
storage, cost more (PUSH costs 3 and SSTORE 20.000)

\(.
23 300.000 —» [21.000 + 25.000 executiofy’—» 254.000 =

GAS-METERED EXECUTION
@ Gas-limit. amount of gas allowed to carry out transaction

@ Price: gas priced in the cryptocurrencies (Ether).

@ EVM specification: provides precise definition of gas
consumed by each EVM bytecode instruction.

@ Gas-model. instructions that require more computational or
storage, cost more (PUSH costs 3 and SSTORE 20.000)

?3 300.000 — [21.000 + 25.000 executiofy’ — 254.000

Nd 30.000 —

GAS-METERED EXECUTION
@ Gas-limit. amount of gas allowed to carry out transaction

@ Price: gas priced in the cryptocurrencies (Ether).

@ EVM specification: provides precise definition of gas
consumed by each EVM bytecode instruction.

@ Gas-model. instructions that require more computational or
storage, cost more (PUSH costs 3 and SSTORE 20.000)

;3 300.000 —» [21.000 + 25.000 executiofy’—s 254.000 %

®)

N’d 30.000 — |21.000 + 9.000 executing| —»

GAS-METERED EXECUTION
@ Gas-limit. amount of gas allowed to carry out transaction

@ Price: gas priced in the cryptocurrencies (Ether).

@ EVM specification: provides precise definition of gas
consumed by each EVM bytecode instruction.

@ Gas-model. instructions that require more computational or
storage, cost more (PUSH costs 3 and SSTORE 20.000)

?3 300.000 — [21.000 + 25.000 executiofy’ — 254.000

Nd 30.000 — |21.000 + 9.000 executing| —» out-of-gas /2%,

GAS-METERED EXECUTION
@ Gas-limit. amount of gas allowed to carry out transaction

@ Price: gas priced in the cryptocurrencies (Ether).
o EVM specification: provides precise definition of gas
consumed by each EVM bytecode instruction.

@ Gas-model. instructions that require more computational or
storage, cost more (PUSH costs 3 and SSTORE 20.000)

?j} 300.000 —[21.000 + 25.000 executiofiy’—s 254.000 % °

®)

]

& 30000 —— | 21.000 + 9.000 executing | — out-of-gas (=%,

o Rationale of gas metering :
» prevents attacks based on non-terminating executions;
» avoids wasting miners computational resources;
» discourages users to overuse replicated storage

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 5/44

INTRODUCTION

_)

Superoptimization is a transformation technique that aims to
find the optimal translation of a code by trying all posible loop-
free sequences of instructions that produce the same result.

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 6/44

INTRODUCTION

_)

Superoptimization is a transformation technique that aims to
find the optimal translation of a code by trying all posible loop-
free sequences of instructions that produce the same result.

s A

@ given: loop-free sequence of code s and a cost
function C
o find: target sequence t that
@ has minimal cost C(t)
© correctly implements s

@ using: constraint solver

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 6/44

INTRODUCTION

_)

Optimization criteria:

@ GAS: fee for gas consumption of each EVM bytecode
@ SIZE: fee for size in bytes

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 7/44

INTRODUCTION

_)

Optimization criteria:

@ GAS: fee for gas consumption of each EVM bytecode
@ SIZE: fee for size in bytes

Impact of gas size:
@ reduces the costs of transactions

@ enlarges Ethereum’s capability to handle
+transactions ...

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 7/44

INTRODUCTION

_)

Optimization criteria:

@ GAS: fee for gas consumption of each EVM bytecode
@ SIZE: fee for size in bytes

Impact of bytes-size
© reduces deployment costs

@ maximum bytes-size allowed for deployment

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 7/44

GASOL: GAS OPTIMIZATION TOOLKIT

> ethereum
¢ foundation

Gas and size superoptimization tool for EVM smart contracts

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 8/44

GASOL: GAS OPTIMIZATION TOOLKIT

> ethereum
¢ foundation

Gas and size superoptimization tool for EVM smart contracts

PUSH1 0x17 SWAP1

DUP1 SWAP3
SLOAD AND
PUSH4 Oxffffffff SWAP2
NOT SWAP1
AND SWAP2
PUSH4 Oxffffffff OR
SWAP3 SWAP1

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 8/44

GASOL: GAS OPTIMIZATION TOOLKIT

> ethereum
¢ foundation

Gas and size superoptimization tool for EVM smart contracts

PUSH1 0x17 SWAP1

DUP1 SWAP3 Stack

SLOAD AND

PUSH4 OxfFfffff SWAP2

NOT SWAP1 | s0 |
AND SWAP2

PUSH4 OxfFfFffff OR

SWAP3 SWAP1

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 8/44

GASOL: GAS OPTIMIZATION TOOLKIT

> ethereum

s foundation

Gas and size superoptimization tool for EVM smart contracts

PUSH1 0x17 SWAP1 145 gas

SLOAD AND
PUSH4 Oxffffffff SWAP2
NOT SWAP1
AND SWAP2
PUSH4 Oxffffffff OR
SWAP3 SWAP1

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 8/44

GASOL: GAS OPTIMIZATION TOOLKIT

), ethereum
¢ foundation

Gas and size superoptimization tool for EVM smart contracts

PUSH1 0x17 SWAP1 145 gas
DUP1 SWAP3 925 bytesl

SLOAD AND Stack

PUSH4 OxfFFFFFf SWAP2 oxl7

NOT SWAP1

AND owapy | OR(AND(OXFFFFFF, s0),
PUSH4 OxfFfFfFff OR AND(NOT (OxfFfFfFfF),
SWAP3 SWAP1 SLOAD(0x17)))

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 8/44

GASOL: GAS OPTIMIZATION TOOLKIT

ethereum
s foundation

Gas and size superoptimization tool for EVM smart contracts

PUSH1 0x17 SWAP1 145 gas PUSH4 OxfFFFFFeF
DUP1 SWAP3 25 bytesl AND

SLOAD AND Stack PUSH32 0xff...00
PUSH4 OfFFFFFFf SWAP2 L7 PUSH1 0x17
N Wby | OR(AND(OXFFTHAT, s0), | Ao

PUSH4 OxfFFFFfff OR AND(NOT (OxfFfFFff), OR

SWAP3 SWAP1 SLOAD(0x17))) PUSH1 0x17

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 8/44

GASOL: GAS OPTIMIZATION TOOLKIT

ethereum
s foundation

Gas and size superoptimization tool for EVM smart contracts

PUSH1 0x17 SwAP1 145 gas 121 gas pyUSH4 OxfFeFeFef
SLOAD AND Stack PUSH32 0xff...00
PUSH4 OxfFFfFif SWAP2 Oxl7 PUSH1 0x17
NOT SWAP1 SLOAD

AND owapy | OR(AND(OXIFFT, s0), AND

PUSH4 OxfFfFfFff OR AND(NOT(OfFfffFF), | og

SWAP3 SWAP1 SLOAD(0x17))) PUSH1 0x17

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 8/44

GASOL: GAS OPTIMIZATION TOOLKIT

ethereum
+ foundation

Gas and size superoptimization tool for EVM smart contracts

PUSH4 Oxfffrfrff

PUSH1 0x17 SwAP1 145 gas 127 gas DuUP1
DUP1 SWAP3 25 bytesl $16 bytes NOT
SLOAD AND Stack AND
PUSH4 OxfffFfFff SWAP2 PUSH1 0x17
NOT SWAP1 07 SLOAD
AND owapy | OR(AND(OXFFFFF, s0),| ~ AND

SWAP2
PUSH4 OxfFffffff OR AND(NOT (OxfffFeff), AND
SWAP3 SWAP1 SLOAD(0x17))) OR

PUSH1 0x17

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 8/44

PLAN OF THE TALK

e Part I: Superoptimization framework (CAV'20, PLDI'24)

Elvira Albert (UCM) Securely Optimized Smart Contracts

PLAN OF THE TALK

e Part I: Superoptimization framework (CAV'20, PLDI'24)

» Symbolic execution

Elvira Albert (UCM) Securely Optimized Smart Contracts

PLAN OF THE TALK

e Part I: Superoptimization framework (CAV'20, PLDI'24)

» Symbolic execution

» Rule-based simplification

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 9/44

PLAN OF THE TALK

e Part I: Superoptimization framework (CAV'20, PLDI'24)

» Symbolic execution
» Rule-based simplification

» Optimal synthesis using Max-SMT

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 9/44

PLAN OF THE TALK

e Part I: Superoptimization framework (CAV'20, PLDI'24)

» Symbolic execution
» Rule-based simplification

» Optimal synthesis using Max-SMT

@ Part II: Extension to memory operations (TACAS'22, ISSTA'24)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 9/44

PLAN OF THE TALK

@ Part |: Superoptimization framework (CAV'20, PLDI'24)

» Symbolic execution
» Rule-based simplification

» Optimal synthesis using Max-SMT
@ Part II: Extension to memory operations (TACAS'22, ISSTA'24)

o Part Ill: Neural-guided superoptimization (IST'25)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 9/44

PLAN OF THE TALK

Part I: Superoptimization framework (CAV'20, PLDI'24)
» Symbolic execution
» Rule-based simplification

» Optimal synthesis using Max-SMT

Part Il: Extension to memory operations (TACAS'22, ISSTA'24)

Part Ill: Neural-guided superoptimization (IST'25)

e Part IV: Proof-assistants to verify implementation (CAV'23)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 9/44

Part |: Basic Superoptimization
Framework

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 10/ 44

PART I: BASIC SUPEROPTIMIZATION ALGORITHM

Input: Program P, Objective Obj
Output: Optimized P’, Gain G
Ensures: P =P’ A Obj(P’) < Obj(P)

Elvira Albert (UCM) Securely Optimized Smart Contracts

PART I: BASIC SUPEROPTIMIZATION ALGORITHM

Input: Program P, Objective Obj

Output: Optimized P’, Gain G

Ensures: P =P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)
2: Seqs < LoopFreeSequences(P)
3: NewSq <[|

LoopFreeSequences

Builds the CFG and extracts the sequences from the basic blocks (splits
at jumps instructions and store operations)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 11/44

PART I. BASIC SUPEROPTIMIZATION ALGORITHM
Input: Program P, Objective Obj
Output: Optimized P’, Gain G
Ensures: P =P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)

2: Seqs < LoopFreeSequences(P)

3 NewSq | |

4: for (seq, ini) € Seqs do

5 final <-Symbolic(seq, ini)

6 fin «<-SimplificationRules(final)

Generates the symbolic state (initial state and final stack) from a given
block and applies simplification rules

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 11/44

PART I: BASIC SUPEROPTIMIZATION ALGORITHM

Input: Program P, Objective Obj
Output: Optimized P’, Gain G
Ensures: P =P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)
2: Seqs < LoopFreeSequences(P)
NewSq | |
for (seq, ini) € Seqs do
final «-Symbolic(seq, ini)
fin «<-SimplificationRules(final)
bounds <—ComputeBounds(seq, fin)

NPT hw

ComputeBounds

Infers a bound for the number of elements located in the stack and the
number of instructions of the solution

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 11/44

PART I: BASIC SUPEROPTIMIZATION ALGORITHM

Input: Program P, Objective Obj
Output: Optimized P’, Gain G
Ensures: P =P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)
2: Seqs < LoopFreeSequences(P)
NewSq <[|
for (seq, ini) € Seqs do
final < Symbolic(seq, ini)
fin «<-SimplificationRules(final)
bounds <+ ComputeBounds(seq, fin)
sol, gains — SearchOptimal(ini, fin, Obj, bounds)

3:
4:
5:
6:
T
8:

SearchOptimal

Finds the best equivalent sequence for the selected objective within the
time limit using at Max-SMT solver

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 11/44

PART I: BASIC SUPEROPTIMIZATION ALGORITHM

Input: Program P, Objective Obj
Output: Optimized P’, Gain G
Ensures: P =P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)

2: Seqs < LoopFreeSequences(P)

3: NewSq <[|

4: for (seq, ini) € Seqs do

5: final < Symbolic(seq, ini)

6: fin «<-SimplificationRules(final)

T bounds <+ ComputeBounds(seq, fin)

8: sol, gains — SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 A CoqChecker(seq, sol) then
10: NewSeq < NewSeq.append((sol, gains))
11: else

12: NewSeq < NewSeq.append((seq, 0))

13: end if

14: end for

CoqChecker

We use the Coq proof-assistant to ensure the optimal solution produces
the same symbolic state as the initial state.

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 11/44

PART I. BASIC SUPEROPTIMIZATION ALGORITHM
Input: Program P, Objective Obj
Output: Optimized P’, Gain G
Ensures: P =P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)

2: Seqs < LoopFreeSequences(P)

3: NewSq <[|

4: for (seq, ini) € Seqs do

5: final + Symbolic(seq, ini)

6: fin « SimplificationRules(final)

T bounds <+ ComputeBounds(seq, fin)

8: sol, gains — SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 A CoqChecker(seq, sol) then
10: NewSeq < NewSeq.append((sol, gains))
11: else

12: NewSeq < NewSeq.append((seq, 0))

13: end if

14: end for

15: P’,G < BuildOptimizedCode(NewSeq)
16: end procedure

BuildOptimizedCode

There is a final step to reconstruct the bytecode from the optimized
sequences (e.g., recalculate jump addresses)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 11/44

FroOM SMART CONTRACTS TO SEQUENCES

Input: Program P, Objective Obj
Output: Optimized P’, Gain G
Ensures: P =P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)

2: Seqs + ‘LoopFreeSequences(P) ‘

3: NewSq < |

4: for (seq, ini) € Seqs do

5: final <— Symbolic(seq, ini)

6: fin + SimplificationRules(final)

T bounds <+ ComputeBounds(seq, fin)

8: sol, gains <— SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 A CoqChecker(seq, sol) then
10: NewSeq < NewSeq.append((sol, gains))
11: else

12: NewSeq < NewSeq.append((seq, 0))

13: end if

14: end for

15: P’,G + BuildOptimizedCode(NewSeq)
16: end procedure

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 12 /44

FroM SMART CONTRACTS TO SEQUENCES

pragma solidity 0.8.9;

contract Bridge is Pool {
using SafeERC20 for IERC20;

t Send(

°
1
2
3
4
5
6
7
8
9

transferld,

-~

ing(l) transfers;
publlc mlnlmalMaxSllppage

setMinimalMaxSlippage(uint32 minimalMaxSlippage)
2 onlyGovernor {
m1n1ma1MaxSllppage = minimalMaxSlippage;

Elvira Albert (UCM) November 12, 2025 13 /44

FroOM SMART CONTRACTS TO SEQUENCES

JUMPDEST PUSH1 0x17 DUP1 SLOAD PUSH4 Oxffffffff NOT AND PUSH4 Oxffffffff
SWAP3 SWAP1 SWAP3 AND SWAP2 SWAP1 SWAP2 OR SWAP1 SSTORE JUMP
JUMPDEST CALLER PUSH1 0x00 SWAP1 DUP2 MSTORE PUSH1 0x8 PUSH1 0x20 MSTORE
PUSH1 0x40 SWAP1 SHA3 SLOAD PUSH1 Oxff AND PUSH2 0x15d3 JUMPI

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 13 /44

FroOM SMART CONTRACTS TO SEQUENCES

JUMPDEST PUSH1 0x17 DUP1 SLOAD PUSH4 Oxffffffff NOT AND PUSH4 Oxffffffff
SWAP3 SWAP1 SWAP3 AND SWAP2 SWAP1 SWAP2 OR SWAP1 SSTORE JUMP
JUMPDEST CALLER PUSH1 0x00 SWAP1 DUP2 MSTORE PUSH1 0x8 PUSH1 0x20 MSTORE
PUSH1 0x40 SWAP1 SHA3 SLOAD PUSH1 Oxff AND PUSH2 0x15d3 JUMPI

CFG generator

(JUMPDEST PUSH1 0x17 DUP1 SLOAD PUSH4 Oxffffffff NOT AND PUSH4 Oxffffffff
SWAP3 SWAP1 SWAP3 AND SWAP2 SWAP1 SWAP2 OR SWAP1 SSTORE JUMP)B1
(JUMPDEST CALLER PUSH1 0x00 SWAP1 DUP2 MSTORE PUSH1 0x8 PUSH1 0x20 MSTORE
PUSH1 0x40 SWAP1 SHA3 SLOAD PUSH1 Oxff AND PUSH2 0x15d3 JUMPI)B2

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 13 /44

FroOM SMART CONTRACTS TO SEQUENCES

(JUMPDEST PUSH1 0x17 DUP1 SLOAD PUSH4 Oxffffffff NOT AND PUSH4 Oxffffffff
SWAP3 SWAP1 SWAP3 AND SWAP2 SWAP1 SWAP2 OR SWAP1 SSTORE J'LHVH:’)B1
(JU’MPDEST CALLER PUSH1 0x00 SWAP1 DUP2 MSTORE PUSH1 0x8 PUSH1 0x20 MSTORE
PUSH1 0x40 SWAP1 SHA3 SLOAD PUSH1 Oxff AND PUSH2 0x15d3 .]U]VIPI)B2

Block generation |

JUMPDEST (PUSHI 0x17 DUP1 SLOAD PUSH4 Oxffffffff NOT AND PUSH4 Oxffffffff
SWAP3 SWAP1 SWAP3 AND SWAP2 SWAP1 SWAP2 OR SWAPI)S1 SSTORE JUMP
JUMPDEST (CALLER PUSH1 0x00 SWAP1 DUP2 MSTORE PUSH1 0x8 PUSH1 OxQO)S2 MSTORE
(PUSHl 0x40 SWAP1 SHA3 SLOAD PUSH1 Oxff AND PUSH2 OXlSdB)S3 JUMPI

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 13 /44

SYMBOLIC EXECUTION

Input: Program P, Objective Obj
Output: Optimized P’, Gain G
Ensures: P =P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)
2: Seqs <+ LoopFreeSequences(P)
3 NewSq < |
4 for (seq, ini) € Seqs do
S)
6: fin + SimplificationRules(final)
7 bounds + ComputeBounds(seq, fin)
8 sol, gains <— SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 A CoqChecker(seq, sol) then
10: NewSeq < NewSeq.append((sol, gains))

11: else

12: NewSeq < NewSeq.append((seq, 0))
13: end if

14: end for

15: P’,G + BuildOptimizedCode(NewSeq)
16: end procedure

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 14 /44

SYMBOLIC EXECUTION

PUSH1 0x17

DUP1

SLOAD

PUSH4 Oxffffffff
NOT

AND

PUSH4 Oxffffffff
SWAP3

SWAP1

SWAP3

AND

SWAP2

SWAP1

SWAP2

OR

SWAP1

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 15 /44

SYMBOLIC EXECUTION

PUSH1 0x17
DUP1

SLOAD

PUSHA Oxfffffffs
NOT

AND

PUSH4 Oxffffffff
SWAP3

SWAP1

SWAP3

AND

SWAP2

SWAP1

SWAP2 S0
OR

SWAP1

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 15 /44

SYMBOLIC EXECUTION

~»PUSH1 0x17
DUP1
SLOAD
PUSH4 Oxffffffff
NOT
AND
PUSH4 Oxffffffff
SWAP3
SWAP1
SWAP3
AND
SWAP2 Ox17
SWAP1 S
SWAP2 0
OR
SWAP1

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 15 /44

SYMBOLIC EXECUTION

PUSH1 0x17
-»DUP1

SLOAD

PUSH4 Oxffffffff

NOT

AND

PUSH4 Oxffffffff

SWAP3

SWAP1

Tipp3 0x17
SWAP2 Ox17

SWAP1
SWAP2 S0
OR

SWAP1

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 15 /44

SYMBOLIC EXECUTION

PUSH1 0x17
DUP1
-»SLOAD
PUSH4 Oxffffffff
NOT
AND
PUSH4 Oxffffffff
SWAP3
SWAP1

SWAP3 SLOAD(0x17)

AND
SWAP?2 Ox17
SWAP1 S
SWAP2 0
OR

SWAP1

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 15 /44

SYMBOLIC EXECUTION

PUSH1 0x17

DUP1

SLOAD

PUSH4 Oxffffffff
NOT

410 Oxffffffff

~»PUSH4 Oxffffffff

SWAP3 AND(NOT(Oxffffffff),
SWAP1

SWAP3 SLOAD(0x17))

AND
SWAP2 OX17
SWAP1 S
SWAP?2 0
OR

SWAP1

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 15 /44

SYMBOLIC EXECUTION

PUSH1 0x17

DUP1

SLOAD

PUSH4 Oxffffffff

NOT

AND

PUSH4 Oxffffffff
-»SWAP3

SWAP1

SWAP3

AND

SWAP2

SWAP1

SWAP2

OR

SWAP1

Elvira Albert (UCM)

S0

AND(NOT(Oxfff£f£££F),
SLOAD(0x17))

Ox17

Oxffffffff

Securely Optimized Smart Contracts

November 12, 2025

15/ 44

SYMBOLIC EXECUTION

PUSH1 0x17

DUP1

SLOAD

PUSH4 Oxffffffff
NOT

AND

PUSH4 Oxffffffff

SWAP3 OX17

SHAP1 OR(AND(Oxffffffff,sg),

SWAP3

AND AND(NOT(Oxfffff££f),

S SLOAD(0x17)))
—Pg%APl

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 15 /44

RULE-BASED SIMPLIFICATION

Input: Program P, Objective Obj
Output: Optimized P’, Gain G
Ensures: P =P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)

2: Seqs <+ LoopFreeSequences(P)

3: NewSq < |

4: for (seq, ini) € Seqs do

5: final < Symbolic(seq, ini)

6: fin < ‘ SimplificationRules(final) ‘

T bounds + ComputeBounds(seq, fin)

8: sol, gains <— SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 A CoqChecker(seq, sol) then
10: NewSeq < NewSeq.append((sol, gains))
11: else

12: NewSeq < NewSeq.append((seq, 0))

13: end if

14: end for

15: P’,G + BuildOptimizedCode(NewSeq)
16: end procedure

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 16 / 44

RULE-BASED SIMPLIFICATION

Ox17

OR(AND(OxfffffEEf,s(),
AND(NOT(Oxfff£££F),
SLOAD(0x17)))

RULE-BASED SIMPLIFICATION

Ox17
DR(AND(OXffffffff,so),

AND(NOT(Oxffff££F),
SLOAD(0x17)))

222222222222222

RULE-BASED SIMPLIFICATION

OP(Xnt) — eval(OP, X;pnt)
NOT(Oxffffffff)

Ox17
DR(AND(OXffffffff,so),

AND(NOT(Oxff££f£££F),
SLOAD(0x17)))

RULE-BASED SIMPLIFICATION

OP(X;nt) — eval(OP, X;,¢)

(0 0 e e e o o o o i i o o o o i i i o o o o i i e e e o o o e 0100 0L 0000

Ox17
DR(AND(OXffffffff,so),

AND(NOT(Oxfff£££F),
SLOAD(0x17)))

RULE-BASED SIMPLIFICATION

OP(Xnt) — eval(OP, X;,¢)

(O e e e o o o o i i o o o o i i i o o o o i e e i o o o e 0100 0L 0000

Ox17
DR(AND(OXffffffff,so),

AND(NOT(Oxfff£££F),
SLOAD(0x17)))

RULE-BASED SIMPLIFICATION

OP(Xnt) — eval(OP, X;,¢)

(O e e e o o o o i o o o o i i i o o o o i e e i i o o o e e 0100 0L 00 00

Ox17
DR(AND(OXffffffff,so),

AND(0x£££ . .. 000,
SLOAD(0x17)))

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 17 /44

CoOMPUTE BOUNDS

PUSH1 0x17

DUP1

SLOAD

PUSH4 Oxffffffff

NOT

AND i .
PUSH4 Oxffffffff Bound on the number of instructions of the
SWAPS3 solution:

SWAP1

SWAP3 Initial length of the block = 16
AND

SWAP2

SWAP1

SWAP2

OR

SWAP1

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 18 /44

CoMPUTE BOUNDS

Bound on the stack elements:

PUSH1 0x17
gggi‘]} Max elements stored in the stack = 4
PUSH4 Oxffffffff
NOT

AND Oxffffffff

-»PUSH4 Oxffffffff

SWAP3 AND(NOT(Oxffffffff),

SWAP1

SIUAP3 SLOAD(0x17))

AND
SWAP2 Ox17
SWAP1 S
SWAP2 0
OR

SWAP1

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 18 /44

SEARCHING FOR THE OPTIMAL SEQUENCE

Input: Program P, Objective Obj
Output: Optimized P’, Gain G
Ensures: P =P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)

2: Seqs <+ LoopFreeSequences(P)

3: NewSq < |

4: for (seq, ini) € Seqs do

5: final < Symbolic(seq, ini)

6: fin < SimplificationRules(final)

7: bounds ¢+ ComputeBounds(seq, fin)

8: sol, gains ‘ SearchOptimal(ini, fin, Obj, bounds) ‘
9: if gains > 0 A CoqChecker(seq, sol) then
10: NewSeq < NewSeq.append((sol, gains))
11: else

12: NewSeq < NewSeq.append((seq, 0))

13: end if

14: end for

15: P’,G + BuildOptimizedCode(NewSeq)
16: end procedure

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 19 /44

SMT ENCODING STEP 1: FLATTENING

Ox17

OR(AND(Oxffffffff,sg),
AND(Oxff. . .00,
SLOAD(0x17)))

SMT ENCODING STEP 1: FLATTENING

s1 — 0x17
So — Oxffffffff
s3 5 Oxff...00

Ox17

AND(Oxff . . .00,
SLOAD(0x17)))

OR(AND(Oxffffffff,sg),

Elvira Albert (UCM) Securely Optimized Smart Contracts

November 12, 2025

20/ 44

SMT ENCODING STEP 1: FLATTENING

s1 — 0x17
So — Oxffffffff
s3 > Oxff...00

S1

OR(AND(SQ,SQ),

AND(s3,SLOAD(s1)))

Elvira Albert (UCM) Securely Optimized Smart Contracts

November 12, 2025

20/ 44

SMT ENCODING STEP 1: FLATTENING

s1 — 0x17
So — Oxffffffff
s3 5 Oxff...00

S4 — AND(SQ ,80)

ss — SLOAD(s1)

OR(S4,AND(S3 ,85))

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 20 /44

SMT ENCODING STEP 1: FLATTENING

s1 — 0x17
So — Oxffffffff
s3 > Oxff...00

S4 AND(SQ ,80)

ss — SLOAD(s1)
Sg > AND(83,85)
S7 — DR(S4,S6)

S1
ST

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 20 /44

SMT STEP 2: MODELING THE STACK & OPCODES

INITIAL S0
PUSH1 0x17 51150
DUP1 $1|51|50
SWAPQ S3|56(52
OR S7|51
SWAP1 51|57

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 21 /44

SMT STEP 2: MODELING THE STACK & OPCODES

INITIAL 8o/ [TLT1
PUSH1 0x17[S1[So[L] L
DUP1 S1|S1|S0| |
SWAP2 S3|S6|S2| | :
OR S7iS51] L[1
SWAP1 S1S7|L|L]]

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 21 /44

SMT STEP 2:

Elvira Albert (UCM)

MODELING THE STACK & OPCODES

X0,0

X0,1

X0,2

X0,3 ||

X1,0

X1,1

X1,2

X1,3

X2.0

X2.1

X2.2

X2.3

X15,0

X15,1

X15,2

X15,3

X16,0

X16,1

X16,2

X16,3

X17,0

X17,1

X17,2

X17,3] |

r 18

Securely Optimized Smart Contracts

November 12, 2025

21/44

SMT STEP 2:

t1
to

Elvira Albert (UCM)

MODELING THE STACK & OPCODES

X0,0

X0,1

X0,2

X0,3 |

X1,0

X1,1

X1,2

X1,3

X2.0

X2.1

X2 2

X2.3

X15,0

X15,1

X15,2

X15,3

X16,0

X16,1

X16,2

X16,3

X17,0

X17,1

X17,2

X17,3] |

r 18

Securely Optimized Smart Contracts

November 12, 2025

21/44

SMT STEP 2: MODELING THE STACK & OPCODES

X15,0/X15,1|X15,2|X15,3
t16 [X16,0/X16,1|X16,2|X16,3

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 21 /44

SMT STEP 2: MODELING THE STACK & OPCODES

X15,0/X15,1|X15,2|X15,3
t16 [X16,0/X16,1|X16,2|X16,3

t16 = SWAP2

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 21 /44

SMT STEP 2: MODELING THE STACK & OPCODES

X15,0/X15,1|X15,2|X15,3
t16 [X15,2/X16,1|X15,0{X16,3

t16 = SWAP2

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 21 /44

SMT STEP 2: MODELING THE STACK & OPCODES

X15,0/X15,1|X15,2|X15,3
t16 [X15,2/X16,1|X15,0/X16,3

t16 = SWAP2 — (16,0 = Z15,2) A (T16,2 = T15,0)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 21 /44

SMT STEP 2: MODELING THE STACK & OPCODES

X15,0/X15,1|X15,2|X15,3
t16 [X15,2|X15,1|X15,0{X15,3

t16 = SWAP2 — (16,0 = Z15,2) A (T16,2 = T15,0)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 21 /44

SMT STEP 2: MODELING THE STACK & OPCODES

X15,0/X15,1|X15,2|X15,3
t16 [X15,2/X15,1|X15,0{X15,3

t16 = SWAP2 — (16,0 = Z15,2) A (T16,2 = T15,0)

A (2161 = T15,1) A (T16,3 = Z15,3)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 21 /44

MAX-SMT ENCODING

@ Complete encoding

Elvira Albert (UCM) Securely Optimized Smart Contracts

MAX-SMT ENCODING

@ Complete encoding
@ Constraints to describe th? initiﬂl stack

X0, = sa)
0<a<k

Elvira Albert (UCM) Securely Optimized Smart Contracts

MAX-SMT ENCODING

@ Complete encoding
@ Constraints to describe th? initiﬂl stack

= X0, = Sa)

0<a<k
@ Constraints to describe the target stack (previous flattening)

F= /\ (XLbound,a = fa)

o<a<w

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025

22 /44

MAX-SMT ENCODING

@ Complete encoding
@ Constraints to describe th(le initiﬂl stack

= X0, = Sa)

0<a<k
@ Constraints to describe the target stack (previous flattening)

F= /\ (XLbound,zl = fa)
o<a<w
@ Constraints to describe effect of instructions on the stack

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 22 /44

MAX-SMT ENCODING

@ Complete encoding
@ Constraints to describe the mntnﬂl stack

= XOa—Sa)

0<a<k
@ Constraints to describe the target stack (previous flattening)

F= /\ (XLbound,zl = fa)

o<a<w
@ Constraints to describe effect of instructions on the stack
© Non-stack operations considered as uninterpreted functions

hard = /\ 0 S l'j S Ins NI NF A CpUSH(j) A\ CSWApk(J /\ CU(J f

0<j<Lbound felnsy

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 22 /44

MAX-SMT ENCODING

@ Complete encoding
@ Constraints to describe the mntnﬂl stack

= X0, = Sa

o<a<k
@ Constraints to describe the target stack (previous flattening)

F= /\ (XLbound,oz = fa)

o<a<w
@ Constraints to describe effect of instructions on the stack
© Non-stack operations considered as uninterpreted functions

hard = /\ 0 S tj S Ins NI NF A CpUSH(j) A\ Cs\,mpk(J /\ CU(J f

0<j<Lbound felnsy
@ Optimization
» The cost of the solution can be expressed in terms of the cost of every
single instruction

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 22 /44

MAX-SMT ENCODING

@ Complete encoding
@ Constraints to describe the mntnﬂl stack

= X0, = Sa

o<a<k
@ Constraints to describe the target stack (previous flattening)

F= /\ (XLbound,oz = fa)

o<a<w
@ Constraints to describe effect of instructions on the stack
© Non-stack operations considered as uninterpreted functions

hard = /\ 0 S tj S Ins NI NF A CpUSH(j) A\ Cs\,mpk(J /\ CU(J f

0<j<Lbound felnsy
@ Optimization
» The cost of the solution can be expressed in terms of the cost of every
single instruction
» SMT formula = hard constraints

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 22 /44

MAX-SMT ENCODING

@ Complete encoding
@ Constraints to describe the mntnﬂl stack

= X0, = Sa

o<a<k
@ Constraints to describe the target stack (previous flattening)

F= /\ (XLbound,oz = fa)

o<a<w
@ Constraints to describe effect of instructions on the stack
© Non-stack operations considered as uninterpreted functions

hard = /\ 0 S tj S Ins NI NF A CpUSH(j) A\ Cs\,mpk(J /\ CU(J f

0<j<Lbound felnsy
@ Optimization
» The cost of the solution can be expressed in terms of the cost of every
single instruction
» SMT formula = hard constraints
» Cost of every EVM instruction = soft constraints

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 22 /44

MAX-SMT ENCODING

@ Complete encoding
@ Constraints to describe the mntnﬂl stack

= X0, = Sa

o<a<k
@ Constraints to describe the target stack (previous flattening)

F= /\ (XLbound,oz = fa)

o<a<w
@ Constraints to describe effect of instructions on the stack
© Non-stack operations considered as uninterpreted functions

hard = /\ 0 S tj S Ins NI NF A CpUSH(j) A\ Cs\,mpk(J /\ CU(J f

0<j<Lbound felnsy
@ Optimization
» The cost of the solution can be expressed in terms of the cost of every
single instruction
» SMT formula = hard constraints
» Cost of every EVM instruction = soft constraints
» Two different criteria to optimize (original 145 gas and 25 bytes)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 22 /44

MAX-SMT ENCODING

@ Complete encoding
@ Constraints to describe the mntnﬂl stack

= X0, = Sa

o<a<k
@ Constraints to describe the target stack (previous flattening)

F= /\ (XLbound,oz = fa)

o<a<w
@ Constraints to describe effect of instructions on the stack
© Non-stack operations considered as uninterpreted functions

hard = /\ 0 S tj S Ins NI NF A CpUSH(j) A\ Cs\,mpk(J /\ CU(J f

0<j<Lbound felnsy
@ Optimization
» The cost of the solution can be expressed in terms of the cost of every
single instruction
» SMT formula = hard constraints
» Cost of every EVM instruction = soft constraints
» Two different criteria to optimize (original 145 gas and 25 bytes)
* Gas model: 121 gas and 46 bytes

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 22 /44

MAX-SMT ENCODING

@ Complete encoding
@ Constraints to describe the mntnﬂl stack

= X0, = Sa

o<a<k
@ Constraints to describe the target stack (previous flattening)

F= /\ (XLbound,oz = fa)

o<a<w
@ Constraints to describe effect of instructions on the stack
© Non-stack operations considered as uninterpreted functions

hard = /\ 0 S tj S Ins NI NF A CpUSH(j) A\ Cs\,mpk(J /\ CU(J f

0<j<Lbound felnsy
@ Optimization
» The cost of the solution can be expressed in terms of the cost of every
single instruction
» SMT formula = hard constraints
» Cost of every EVM instruction = soft constraints
» Two different criteria to optimize (original 145 gas and 25 bytes)
* Gas model: 121 gas and 46 bytes
* Bytes-size model:127 gas and 16 bytes

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 22 /44

EXPERIMENTAL EVALUATION

@ Dataset: 30 most recent smart contracts compiled using version 8 of
solc, whose source code was available as of June 21, 2021

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 23 /44

EXPERIMENTAL EVALUATION

@ Dataset: 30 most recent smart contracts compiled using version 8 of
solc, whose source code was available as of June 21, 2021

@ Compiled using solc version 0.8.9 with the optimization flag enabled.
Already optimized code!

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 23 /44

EXPERIMENTAL EVALUATION

@ Dataset: 30 most recent smart contracts compiled using version 8 of
solc, whose source code was available as of June 21, 2021

@ Compiled using solc version 0.8.9 with the optimization flag enabled.
Already optimized code!

@ Split in memory and store operations

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 23 /44

EXPERIMENTAL EVALUATION

@ Dataset: 30 most recent smart contracts compiled using version 8 of
solc, whose source code was available as of June 21, 2021

@ Compiled using solc version 0.8.9 with the optimization flag enabled.
Already optimized code!

@ Split in memory and store operations

@ Two objective functions: gas and byte size

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 23 /44

EXPERIMENTAL EVALUATION

Dataset: 30 most recent smart contracts compiled using version 8 of
solc, whose source code was available as of June 21, 2021

Compiled using solc version 0.8.9 with the optimization flag enabled.
Already optimized code!

Split in memory and store operations

Two objective functions: gas and byte size

The primary findings are:

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 23 /44

EXPERIMENTAL EVALUATION

Dataset: 30 most recent smart contracts compiled using version 8 of
solc, whose source code was available as of June 21, 2021

Compiled using solc version 0.8.9 with the optimization flag enabled.
Already optimized code!

Split in memory and store operations

Two objective functions: gas and byte size

The primary findings are:
@ We obtained size gains and gas gains for the 14% and 28% of the
analyzed blocks resp.

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 23 /44

EXPERIMENTAL EVALUATION

Dataset: 30 most recent smart contracts compiled using version 8 of
solc, whose source code was available as of June 21, 2021

Compiled using solc version 0.8.9 with the optimization flag enabled.
Already optimized code!

Split in memory and store operations

Two objective functions: gas and byte size

The primary findings are:
@ We obtained size gains and gas gains for the 14% and 28% of the

analyzed blocks resp.
@ Bytes optimized: 2.64%

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 23 /44

EXPERIMENTAL EVALUATION

Dataset: 30 most recent smart contracts compiled using version 8 of
solc, whose source code was available as of June 21, 2021

Compiled using solc version 0.8.9 with the optimization flag enabled.
Already optimized code!

Split in memory and store operations

Two objective functions: gas and byte size

The primary findings are:
@ We obtained size gains and gas gains for the 14% and 28% of the
analyzed blocks resp.
@ Bytes optimized: 2.64%
© Gas optimized: 0.64%

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 23 /44

EXPERIMENTAL EVALUATION

Dataset: 30 most recent smart contracts compiled using version 8 of
solc, whose source code was available as of June 21, 2021

Compiled using solc version 0.8.9 with the optimization flag enabled.
Already optimized code!

Split in memory and store operations

Two objective functions: gas and byte size

The primary findings are:
@ We obtained size gains and gas gains for the 14% and 28% of the
analyzed blocks resp.

@ Bytes optimized: 2.64%

© Gas optimized: 0.64%
* => 167.440,98 USD in one day
* = more than 61M USD in one year (assuming they are uniformly

distributed)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 23 /44

Part |lI: Extension to Memory
Operations

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 24 /44

MOTIVATION

@ Our basic framework can potentially achieve more savings by
including operations beyond stack operations

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 25/44

MOTIVATION

@ Our basic framework can potentially achieve more savings by
including operations beyond stack operations

@ |dea: extend the basic framework to handle memory operations

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 25/44

MOTIVATION

@ Our basic framework can potentially achieve more savings by
including operations beyond stack operations

@ |dea: extend the basic framework to handle memory operations

@ Limitation: great overhead when modelling memory extensions in
superoptimization
> In fact, EBSO and SOUPER superoptimizers avoid it

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 25 /44

MOTIVATION

@ Our basic framework can potentially achieve more savings by
including operations beyond stack operations

@ |dea: extend the basic framework to handle memory operations
o Limitation: great overhead when modelling memory extensions in
superoptimization
» In fact, EBSO and SOUPER superoptimizers avoid it
@ Proposal: leverage our basic two-staged method

» Detecting redundant memory accesses as simplification rules
» Extend the Max-SMT encoding using a dependency order among
instructions

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 25 /44

SUPEROPTIMIZATION ALGORITHM WITH MEMORY
Input: Program P, Objective Obj
Output: Optimized P/, Gain G
Ensures: P =P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)

2: Segs < LoopFreeSequences(P)

3: NewSq «[]

4: for (seq, ini) € Seqgs do

5: final «-Symbolic(seq, ini)

6: fin «-SimplificationRules(final)
7: bounds <— ComputeBounds(seq, fin)

8: sol, gains < SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 A CoqChecker(seq, sol) then
10: NewSeq < NewSeq.append((sol, gains))

11: else

12: NewSeq < NewSeq.append((seq, 0))
13: end if

14: end for

15: P’)G « BuildOptimizedCode(NewSeq)
16: end procedure

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 26 /44

SUPEROPTIMIZATION ALGORITHM WITH MEMORY
Input: Program P, Objective Obj
Output: Optimized P/, Gain G
Ensures: P =P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)

2: Segs < LoopFreeSequences(P)

3: NewSq «[]

4: for (seq, ini) € Seqgs do

5: final «-Symbolic(seq, ini)

6: fin «-SimplificationRules(final)
7: bounds < ComputeBounds(seq, fin)

8: sol, gains < SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 A CoqChecker(seq, sol) then
10: NewSeq < NewSeq.append((sol, gains))

11: else

12: NewSeq < NewSeq.append((seq, 0))
13: end if

14: end for

15: P’)G « BuildOptimizedCode(NewSeq)
16: end procedure

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 26 /44

SYMBOLIC EXECUTION

4 N\
PUSH1 0x80 SLOAD Stack:
PUSH1 0x40 °°°
MSTORE Sl
SLOAD gg;TIVALUE
SSTORE ISZERO Memory:
=)
Storage:

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 27 /44

SYMBOLIC EXECUTION

4 N\
PUSH1 0x80 SLOAD Stack:
PUSH1 0x40 °°°
»MSTORE SRR
SLOAD SQ;TIVALUE
SSTORE ISZERO Memory:
- J MSTORE3(0x80,0x40)
Storage:

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 27 /44

SYMBOLIC EXECUTION

4 N
PUSH1 0x80 SLOAD Stack:
PUSH1 0x40 .
»SLOAD gg;TIVALUE
SSTORE ISZERO Memory:
- J MSTORE3(0x80,0x40)
Storage:
SLOAD1(0x01)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 27 / 44

SYMBOLIC EXECUTION

PUSH1 0x80 SLOAD

PUSH1 0x40 e

MSTORE SSTORE

SLO AD CALLVALUE
DUP1

SSTURE »ISZERD

Storage:

Stack:

CALLVALUE

ISZ(CALLVALUE)

Memory:

MSTORE;(0x80,0x40)

SLOAD;((0x01) [SSTORE,3(0x01,V1)

SLOADs; (0x01)

SSTORE44(0x01,V2)

Elvira Albert (UCM) Securely Optimized Smart Contracts

November 12, 2025 27 / 44

RULE-BASED MEMORY SIMPLIFICATIONS

Notion of Conflict
Two memory instructions A and B have a conflict, denoted as conf(A,B) if:

(i) A'is a store and B is a load and the positions they access might be the same;

(i) A and B are both stores, the positions they modify might be the same, and
they store different values.

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 28 /44

RULE-BASED MEMORY SIMPLIFICATIONS

Notion of Conflict
Two memory instructions A and B have a conflict, denoted as conf(A,B) if:

(i) A'is a store and B is a load and the positions they access might be the same;

(i) A and B are both stores, the positions they modify might be the same, and
they store different values.

We have the following simplification rules:

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 28 /44

RULE-BASED MEMORY SIMPLIFICATIONS

Notion of Conflict
Two memory instructions A and B have a conflict, denoted as conf(A,B) if:

(i) A'is a store and B is a load and the positions they access might be the same;

(i) A and B are both stores, the positions they modify might be the same, and
they store different values.

We have the following simplification rules:

o If a STORE(p, v) is followed by a LOAD(p) instruction with no
conflicting STORE in between, replace the LOAD(p) with v

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 28 /44

RULE-BASED MEMORY SIMPLIFICATIONS

Notion of Conflict
Two memory instructions A and B have a conflict, denoted as conf(A,B) if:
(i) A'is a store and B is a load and the positions they access might be the same;

(i) A and B are both stores, the positions they modify might be the same, and
they store different values.

We have the following simplification rules:

o If a STORE(p, v) is followed by a LOAD(p) instruction with no
conflicting STORE in between, replace the LOAD(p) with v

@ If two STORE instructions access the same position with no LOAD in
between, remove the first STORE

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 28 /44

RULE-BASED MEMORY SIMPLIFICATIONS

Notion of Conflict
Two memory instructions A and B have a conflict, denoted as conf(A,B) if:
(i) A'is a store and B is a load and the positions they access might be the same;

(i) A and B are both stores, the positions they modify might be the same, and
they store different values.

We have the following simplification rules:

o If a STORE(p, v) is followed by a LOAD(p) instruction with no
conflicting STORE in between, replace the LOAD(p) with v

@ If two STORE instructions access the same position with no LOAD in
between, remove the first STORE

o If there is a STORE(p, LOAD(p)) instruction and position p is not
modified by another STORE instruction, remove this instruction

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 28 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

SLOAD1(0x01)

SSTORE,3(0x01,V1)

SLOAD3; (0x01)

SSTORE44(0x01,V2)

Elvira Albert (UCM) Securely Optimized Smart Contracts

November 12, 2025 29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

SLOAD;((0x01)

SSTOREp3(0x01,V1)

SLOAD3; (0x01)

SSTORE44(0x01,V2)

Elvira Albert (UCM)

Securely Optimized Smart Contracts

November 12, 2025 29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

0x01

0x01

2
Conflict

SLOAD1(0x01)

SSTORE3(0x01,V1)

SLOAD3; (0x01)

SSTORE44(0x01,V2)

Elvira Albert (UCM) Securely Optimized Smart Contracts

November 12, 2025 29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

.

SLOAD;((0x01) [SSTORE;3(0x01,V1) | SLOADs; (0x01) | SSTORE 44 (0x01,V2)
. 4
Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

—

SLOAD1(0x01)

SSTOREp3(0x01,V1)

SLOAD31 (OXO 1)

SSTORE44(0x01,V2)

Elvira Albert (UCM)

4

Securely Optimized Smart Contracts

November 12, 2025 29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

—

SLOAD1(0x01)

SSTORE,3(0x01,V1)

SLOAD3; (0x01) [SSTORE44(0x01,V?2)

Elvira Albert (UCM)

4

/

Securely Optimized Smart Contracts November 12, 2025

29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

N

SLOAD1(0x01)

SSTORE,3(0x01,V1)

SLOAD3; (0x01) [SSTORE44(0x01,V?2)

Elvira Albert (UCM)

4

/

Securely Optimized Smart Contracts November 12, 2025

29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

N

SLOAD1(0x01)

SSTOREp3(0x01,V1)

SLOAD3; (0x01) | SSTORE44(0x01,V?2)

Elvira Albert (UCM)

4

/

Securely Optimized Smart Contracts November 12, 2025

29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

SLOAD3; (0x01)

———

SLOAD1(0x01)

SSTORE3(0x01,V1)

SSTORE44(0x01,V2)

Elvira Albert (UCM)

4

/

Securely Optimized Smart Contracts November 12, 2025 29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

V1

—

SLOAD1(0x01)

SSTORE3(0x01,V1)

SSTORE44(0x01,V2)

Elvira Albert (UCM)

4

/

Securely Optimized Smart Contracts November 12, 2025 29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

V2’ = V2[SLOAD31 |—>V1]

—

SLOAD1(0x01)

SSTORE3(0x01,V1)

SSTORE44(0x01,V2)

Elvira Albert (UCM)

4

/

Securely Optimized Smart Contracts November 12, 2025 29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

—

SLOAD1(0x01)

SSTORE3(0x01,V1)

SSTORE,4(0x01,V2")

Elvira Albert (UCM)

4

/

Securely Optimized Smart Contracts November 12, 2025 29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

—

SLOAD1(0x01)

SSTOREp3(0x01,V1)

SSTORE44 (OXO 1 ,V2’)

Elvira Albert (UCM)

4

/

Securely Optimized Smart Contracts November 12, 2025 29 /44

MEMORY SIMPLIFICATIONS - EXAMPLE

Elvira Albert (UCM)

e

SLOAD;(0x01)

SSTORE,44(0x01,V2")

Securely Optimized Smart Contracts

November 12, 2025

29 /44

DEPENDENCY ORDER

Dependency Order

Let A and B be two instructions in a sequence S. We say that B has to be
executed after A in S, denoted as A C B if conf(A,B).

i) There is no conflict between LOADS

i) Dependencies are added after simplification

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 30/44

DEPENDENCY ORDER

Dependency Order

Let A and B be two instructions in a sequence S. We say that B has to be
executed after A in S, denoted as A C B if conf(A,B).

i) There is no conflict between LOADS
i) Dependencies are added after simplification

=>Introduce variables /4, Iz to track their positions

Ia < Iz where AC B

ho < lsg where SLOAD;p C SSTORE44

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 30/44

EXPERIMENTAL EVALUATION

@ 1 benchmark set:

» 30 latest verified smart contracts compiled with latest solc version at
the moment (0.8.9)

Elvira Albert (UCM) Securely Optimized Smart Contracts

EXPERIMENTAL EVALUATION

@ 1 benchmark set:
» 30 latest verified smart contracts compiled with latest solc version at
the moment (0.8.9)
@ The primary findings are:
@ 0.72% extra gas savings from the code optimized by solc (+0.1% from
basic version)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 31/44

EXPERIMENTAL EVALUATION

@ 1 benchmark set:

» 30 latest verified smart contracts compiled with latest solc version at
the moment (0.8.9)

@ The primary findings are:
@ 0.72% extra gas savings from the code optimized by solc (+0.1% from
basic version)
@ Gas savings breakdown:
* 14.6% memory rules
* 34.4% other rules
* 51% Max-SMT encoding

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 31/44

EXPERIMENTAL EVALUATION

@ 1 benchmark set:

» 30 latest verified smart contracts compiled with latest solc version at
the moment (0.8.9)

@ The primary findings are:
@ 0.72% extra gas savings from the code optimized by solc (+0.1% from
basic version)
@ Gas savings breakdown:
* 14.6% memory rules
* 34.4% other rules
* 51% Max-SMT encoding
© 0.72%=> 185,754.82 USD in one day
Q 0.1% = 26,162.65 USD in one day

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 31/44

Part [ll: Neural-Guided

Superoptimization

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 32/44

MOTIVATION

@ The previous extension results in larger blocks to analyze

Elvira Albert (UCM) Securely Optimized Smart Contracts

MOTIVATION

@ The previous extension results in larger blocks to analyze

» Pros: there are more potential optimization gains
» Cons: scalability poses a greater threat
* The search space grow exponentially with the length of the sequence

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 33/44

MOTIVATION

@ The previous extension results in larger blocks to analyze

» Pros: there are more potential optimization gains
» Cons: scalability poses a greater threat
* The search space grow exponentially with the length of the sequence

@ Motivation

» Quite often the blocks to superoptimize are already optimal
» The initial bound is often larger than needed, resulting in an
unnecessary overhead

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 33/44

MOTIVATION

@ The previous extension results in larger blocks to analyze

» Pros: there are more potential optimization gains
» Cons: scalability poses a greater threat
* The search space grow exponentially with the length of the sequence

@ Motivation
» Quite often the blocks to superoptimize are already optimal
» The initial bound is often larger than needed, resulting in an
unnecessary overhead
@ Proposal: incorporate machine learning techniques to tackle the
previous issues
» Our superoptimization framework provides us with an unlimited source

of information for the supervised learning
» There are patterns of code identify the previous behaviour

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 33/44

NEURAL-GUIDED SUPEROPTIMIZATION ALGORITHM

Input: Program P, Objective Obj
Output: Optimized P’; Gain G
Ensures: P = P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)

2: Seqs < LoopFreeSequences(P)
3: NewSq []
4 for (seq, ini) € Seqs do

optimize %‘ PredictOptimizable(s,Obj) ‘
if optimize then

> o«

PredictOptimizable

PredictOptimizable classifier that predicts two classes: already opti-
mal or not optimal

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 34 /44

NEURAL-GUIDED SUPEROPTIMIZATION ALGORITHM

Input: Program P, Objective Obj
Output: Optimized P’; Gain G
Ensures: P = P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)
2: Seqs < LoopFreeSequences(P)
3 NewSq []
4 for (seq, ini) € Seqs do
5 optimize <—PredictOptimizable(s,Obj)
6: if optimize then
7 final < Symbolic(seq, ini)
8 fin + SimplificationRules(final)
9:

bounds « | ComputeBounds(seq,fin)

ComputeBounds

ComputeBounds determines an upper bound and a lower bound on
the minimum number of instructions

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 34 /44

NEURAL-GUIDED SUPEROPTIMIZATION ALGORITHM

Input: Program P, Objective Obj
Output: Optimized P’; Gain G
Ensures: P = P’ A Obj(P’) < Obj(P)
1: procedure SUPEROPTIMIZATION(P,Obj)
2: Seqs < LoopFreeSequences(P)
3 NewSq []
4 for (seq, ini) € Seqs do
5 optimize <—PredictOptimizable(s,Obj)
6: if optimize then
: final < Symbolic(seq, ini)
8 fin + SimplificationRules(final)
9 bounds < ComputeBounds(seq,fin)

10: sz | PredictBlockSizeBound(seq, bounds,Obj) ‘

11: sol, gains ¢ SearchOptimal(ini, fin, Obj, sz, bounds)
12: if gains > 0 A CoqChecker(seq, sol) then

13: NewSeq + NewSeq.append((sol, gains))

14: else

15: NewSeq « NewSeq.append((seq, 0))

16: end if

17: end if

18: end for

19: P’,G <+ BuildOptimizedCode(NewSeq)
20: end procedure

PredictBlockSizeBound
PredictBlockSizeBound regression model to predict the length needed
to compute an optimal sequence

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 34 /44

EXPERIMENTAL SETUP

@ Training:

Elvira Albert (UCM) Securely Optimized Smart Contracts

EXPERIMENTAL SETUP

@ Training:
» Blocks extracted from the last 5,000 verified smart contracts
downloaded in three different dates

Elvira Albert (UCM) Securely Optimized Smart Contracts

EXPERIMENTAL SETUP

@ Training:
» Blocks extracted from the last 5,000 verified smart contracts
downloaded in three different dates
» Avoid repeated blocks, selecting a representative for each bytecode
input representation

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 35/44

EXPERIMENTAL SETUP

@ Training:
» Blocks extracted from the last 5,000 verified smart contracts
downloaded in three different dates
» Avoid repeated blocks, selecting a representative for each bytecode
input representation
» 80% for training and 20% for validation

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 35/44

EXPERIMENTAL SETUP

@ Training:
» Blocks extracted from the last 5,000 verified smart contracts
downloaded in three different dates
» Avoid repeated blocks, selecting a representative for each bytecode
input representation
» 80% for training and 20% for validation

@ Experimental Setup:
» 100 most-called contracts deployed on Ethereum compiled with recent
versions of solc
* 41,106,276 transactions in total

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 35/44

EXPERIMENTAL SETUP

@ Training:
» Blocks extracted from the last 5,000 verified smart contracts
downloaded in three different dates
» Avoid repeated blocks, selecting a representative for each bytecode
input representation
» 80% for training and 20% for validation

@ Experimental Setup:
» 100 most-called contracts deployed on Ethereum compiled with recent
versions of solc
* 41,106,276 transactions in total
» We run different configurations that with combinations of:

* Different timeouts n = 10,5,2,1s
* Selectively enabling each of the previous two models

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 35/44

EXPERIMENTAL EVALUATION

(%]

t=10s

o
kel
~+

o o o o
= = = =
2 2 2 2
= = = =

Q

t=5s

o
el
~+

Q

t=2s

o
kel
~+

98.49%)

Q

t=1s

o
kel
~+

98.38%

0

20 80
% Gains comparison among categories

IN
o
o)}
=}
-
o
S

@ PredictOptimizable:

100.0%

t=10s

36.43%

100.0%)
t=5s

100.0%)
t=2s

100.0%)
t=1s
39.23%

0 20 40 60 80 100

% Time comparison among categories

» Preserves more than 96% of the savings!
» Time reduction up to 40% of the initial configuration

Elvira Albert (UCM)

Securely Optimized Smart Contracts

EXPERIMENTAL EVALUATION

%] 100.0%)|

t=10s
b 101.47%

%] 100.0%|

100.0%
t=10s

96.27%

100.0%)
=5s t=5s
b 106.55% 96.03%
@ 100.0% 100.0%)

t=2s
95.12%

=2s
114.01%

%] 100.0%|
b

20 40 60 80 100 120 20 40 60 80 100
% Gains comparison among categories % Time comparison among categories

100.0%)
t=1s
126.21% 95.18%

t=1s

o
o

@ PredictBlockSizeBound:

» Achieves > 100% of the gains consistently
» Greater percentage of gains when decreasing the time limit

Elvira Albert (UCM) Securely Optimized Smart Contracts

EXPERIMENTAL EVALUATION

Q

100.0%) %) 100.0%)
t=10s

96.93% b+opt] 32.81%

Q

89.13% %)
t=5s

92.16%

Q

77.34%
t=2s
86.35%

Q

64.74% @ 12.99%
t=1s

80.11%| b+opt|4.45%

o
N
o
N
o
[o2)
o

80 100 20 40 60 80 100
% Gains compared to (t=10s,2) % Gains compared to (t=10s,2)

0

e Configuration chosen: (t = 2s, b+opt) with both models enabled

» Average optimization time per contract: ~3 min
» $1.24 M savings on these contracts!

Elvira Albert (UCM) Securely Optimized Smart Contracts

Part IV: Verification of
Optimization Results

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 37/44

VERIFICATION OF RESULTS

Optimizer

p_>_>p/

Elvira Albert (UCM) Securely Optimized Smart Contracts

VERIFICATION OF RESULTS

Optimizer Comparator

> P’ >.—)Q/Q
1T

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 38/44

VERIFICATION OF RESULTS

Optimizer Comparator

We develop the comparator using the proof assistant’s (program-
ming) language, and prove its correctness.

Specification
and Proofs

Code of the
Comparator

Spec: If it returns Q then P and P’ are semantically equivalent.

Elvira Albert (UCM)

Securely Optimized Smart Contracts November 12, 2025 38/44

OPTIMIZATION EXAMPLE

PUSH1 0x17, DUP1, SLOAD, PUSH4 Oxffffffff, NOT, AND, PUSH4
Oxffffffff, SWAP3, SWAP1, SWAP3, AND, SWAP2, SWAP1, SWAP2,0R, SWAP1

PUSH4 Oxffffffff, AND PUSH32, Oxff...00000000, PUSH1 0x17, SLOAD,
AND, OR, PUSH1 0x17

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 39 /44

OPTIMIZATION EXAMPLE

PUSH1 0x17, DUP1, SLOAD, PUSH4 Oxffffffff, NOT, AND, PUSH4
Oxffffffff, SWAP3, SWAP1, SWAP3, AND, SWAP2, SWAP1, SWAP2,0R, SWAP1

PUSH4 Oxffffffff, AND PUSH32, Oxff...00000000, PUSH1 0x17, SLOAD,
AND, OR, PUSH1 0x17

[]

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 39 /44

OPTIMIZATION EXAMPLE

PUSH1 0x17, DUP1, SLOAD, PUSH4 Oxffffffff, NOT, AND, PUSH4
Oxffffffff, SWAP3, SWAP1, SWAP3, AND, SWAP2, SWAP1, SWAP2,0R, SWAP1

PUSH4 Oxffffffff, AND PUSH32, Oxff...00000000, PUSH1 0x17, SLOAD,
AND, OR, PUSH1 0x17

[]

Elvira Albert (UCM) Securely Optimized Smart Contracts

0x17

S0

OxfffFffff

S0

November 12, 2025

39 /44

OPTIMIZATION EXAMPLE

PUSH1 0x17, DUP1, SLOAD, PUSH4 Oxffffffff, NOT, AND, PUSH4
Oxffffffff, SWAP3, SWAP1, SWAP3, AND, SWAP2, SWAP1, SWAP2,0R, SWAP1

[]

OxfffFffff

0x17

#0x17

#0x17

0x17|0x17

0x17

0x17

S0 S0

S0

S0

0x17

OR(AND(OxFFFFF, s0)

PUSH4 Oxffffffff, AND PUSH32, Oxff...00000000, PUSH1 0x17, SLOAD,
AND, OR, PUSH1 0x17

[]

Elvira Albert (UCM) Securely Optimized Smart Contracts

OxfffFffff

5o |[AND(OXFHF, s0)]

0x17
OR(AND(| #0x17),
AND (OxfFtrtrff , s0))

November 12, 2025

39 /44

OPTIMIZATION EXAMPLE

PUSH1 0x17, DUP1, SLOAD, PUSH4 Oxffffffff, NOT, AND, PUSH4
Oxffffffff, SWAP3, SWAP1, SWAP3, AND, SWAP2, SWAP1, SWAP2,0R, SWAP1

OxfffFffff

0x17

#0x17

#0x17

0x17|0x17

0x17

0x17

S0 S0

S0

S0

0x17

OR(AND(OxFFFFF, s0)

PUSH4 Oxffffffff, AND PUSH32, Oxff...00000000, PUSH1 0x17, SLOAD,
AND, OR, PUSH1 0x17

[]

OxfffFffff

5o |[AND(OXFHF, s0)]

0x17
OR(AND(| #0x17),
AND (OxfFtrtrff , s0))

The final stacks are equivalent due to:

e Simplification rule: NOT (Oxffffffff) = 0xf...00000000.
e Comutativity of OR

Elvira Albert (UCM) Securely Optimized Smart Contracts

November 12, 2025

39 /44

VERIFICATION OF RESULTS

1= . Symbolic
P,—i» Symbolic — Rule — _)Q/Q

1" Execution —— Optimization —— Séal::::kg? ’
H !
k = ST, ST,

Theorem opt_correct:
forall (pl p2: prog) (k: nat),
eq_chkr pl p2 k = true —
forall (s : stack), length s = k — evmSem pl s = evmSem p2 s.

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 40 /44

VERIFICATION OF RESULTS

!
! Symbolic — Rule —— Symbolic
P— . Lo States Eq.
:" Execution —— Optimization _,) e
k - STz ST,
0x17
ST1: |OR(AND(OXFFFEHTF, s0) ,
AND(| #0x17))
| 07
STa: |OR(AND([OXFINE0000000]. #0x17),
AND (OXfFHAE, s5))

Theorem opt_correct:
forall (pl p2: prog) (k: nat),
eq_chkr pl p2 k = true —

forall (s : stack), length s = k — evmSem pl s = evmSem p2 s.

Elvira Albert (UCM) Securely Optimized Smart Contracts

November 12, 2025

40/ 44

VERIFICATION OF RESULTS

!
Pl—é') STl STl a
: Symbolic — Rule —— Rl :
P— . Lo States Eq. —> Q/Q
:" Execution —— Optimization _/) Checker :
k= ST ST
0x17 0x17
STi: |OR(AND(OXfHIH, s0) , ST{: |OR(AND(OXFFFHT, so) ,
AND(#0x17)) AND (JOXFINO00006001, #0x17))
* 0x17
STo: |OR(AND([OXFINB00000001, #0x17), ST} |OR(AND(| #0x17),
AND (OxfFFr , s0)) AND (OXFFFFFF, sp))

Theorem opt_correct:
forall (pl p2: prog) (k: nat),
eq_chkr pl p2 k = true —
forall (s : stack), length s = k — evmSem pl s = evmSem p2 s.

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 40 /44

Conclusions & Future Work |

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 41 /44

CONCLUSIONS

@ We have introduced a framework for the optimization of smart
contracts based on formal methods and made this approach feasible
for practical use

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 42 /44

CONCLUSIONS

@ We have introduced a framework for the optimization of smart
contracts based on formal methods and made this approach feasible
for practical use

@ Superoptimization has very interesting applications:

» Extra Layer of Optimization
» Learning New Peephole Optimizations
» Development of New Optimization Techniques

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 42 /44

CONCLUSIONS

@ We have introduced a framework for the optimization of smart
contracts based on formal methods and made this approach feasible
for practical use

@ Superoptimization has very interesting applications:

» Extra Layer of Optimization
» Learning New Peephole Optimizations
» Development of New Optimization Techniques

@ It has been used to improve the solc compiler optimization algorithm!

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 42 /44

CONCLUSIONS

@ We have introduced a framework for the optimization of smart
contracts based on formal methods and made this approach feasible
for practical use

@ Superoptimization has very interesting applications:

» Extra Layer of Optimization
» Learning New Peephole Optimizations
» Development of New Optimization Techniques

@ It has been used to improve the solc compiler optimization algorithm!

@ Four grants given by the Ethereum Foundation:

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 42 /44

CONCLUSIONS

@ We have introduced a framework for the optimization of smart
contracts based on formal methods and made this approach feasible
for practical use

@ Superoptimization has very interesting applications:

» Extra Layer of Optimization
» Learning New Peephole Optimizations
» Development of New Optimization Techniques

@ It has been used to improve the solc compiler optimization algorithm!

@ Four grants given by the Ethereum Foundation:

» Adaptation of GASOL into the solc compiler output and memory
extension enhancement (Finished!)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 42 /44

CONCLUSIONS

@ We have introduced a framework for the optimization of smart
contracts based on formal methods and made this approach feasible
for practical use

@ Superoptimization has very interesting applications:

» Extra Layer of Optimization
» Learning New Peephole Optimizations
» Development of New Optimization Techniques

@ It has been used to improve the solc compiler optimization algorithm!

@ Four grants given by the Ethereum Foundation:

» Adaptation of GASOL into the solc compiler output and memory
extension enhancement (Finished!)
» Formal verification of optimization results (Foryu project, ongoing)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 42 /44

CONCLUSIONS

@ We have introduced a framework for the optimization of smart

contracts based on formal methods and made this approach feasible
for practical use

@ Superoptimization has very interesting applications:
» Extra Layer of Optimization
» Learning New Peephole Optimizations
» Development of New Optimization Techniques

@ It has been used to improve the solc compiler optimization algorithm!

@ Four grants given by the Ethereum Foundation:
» Adaptation of GASOL into the solc compiler output and memory
extension enhancement (Finished!)
» Formal verification of optimization results (Foryu project, ongoing)
» Integration by means of a greedy algorithm into the Yul to EVM
compilation pipeline (Grey project, ongoing)

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 42 /44

FUuTUurRE WORK

@ Adapt the framework to synthesize EVM bytecode from Yul code

Elvira Albert (UCM) Securely Optimized Smart Contracts

FuTurRE WORK

@ Adapt the framework to synthesize EVM bytecode from Yul code
@ Incorporate more precise information based on Data-Flow analysis

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 43 /44

FuTurRE WORK

@ Adapt the framework to synthesize EVM bytecode from Yul code
@ Incorporate more precise information based on Data-Flow analysis

@ Study more applications of Al within superoptimization

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 43 /44

FuTurRE WORK

Adapt the framework to synthesize EVM bytecode from Yul code
Incorporate more precise information based on Data-Flow analysis
Study more applications of Al within superoptimization

Enable Associative-Commutative Reasoning in a SMT Solver to
produce an alternative encoding

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 43 /44

FuTurRE WORK

Adapt the framework to synthesize EVM bytecode from Yul code
Incorporate more precise information based on Data-Flow analysis

Study more applications of Al within superoptimization

Enable Associative-Commutative Reasoning in a SMT Solver to
produce an alternative encoding

Superoptimization of other Stack-Based Languages

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 43 /44

Thank you for your attention!

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 44 /44

	Introduction
	Part I: Basic Superoptimization Framework
	Part II: Extension to Memory Operations
	Part III: Neural-Guided Superoptimization
	Part IV: Verification of Optimization Results
	Conclusions & Future Work

