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What do we need to know about smart
contracts?

Smart contract: open-source software on the
blockchain

▶ Not necessarily restricted to the classical
concept of contract

▶ Collection of secured stored functions
▶ All records of the transactions stored on a

public and decentralized blockchain
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Gas-Metered Execution
Gas-limit: amount of gas allowed to carry out transaction

Price: gas priced in the cryptocurrencies (Ether).

EVM specification: provides precise definition of gas
consumed by each EVM bytecode instruction.

Gas-model: instructions that require more computational or
storage, cost more (PUSH costs 3 and SSTORE 20.000)

300.000 21.000 + 25.000 execution 254.000

30.000 21.000 + 9.000 executing out-of-gas

Rationale of gas metering :
▶ prevents attacks based on non-terminating executions;
▶ avoids wasting miners computational resources;
▶ discourages users to overuse replicated storage
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Introduction

Superoptimization is a transformation technique that aims to
find the optimal translation of a code by trying all posible loop-
free sequences of instructions that produce the same result.

Superoptimization

given: loop-free sequence of code s and a cost
function C

find: target sequence t that
1 has minimal cost C(t)
2 correctly implements s

using: constraint solver
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Introduction

Optimization criteria:

GAS: fee for gas consumption of each EVM bytecode

SIZE: fee for size in bytes

Superoptimization

Impact of gas size:

1 reduces the costs of transactions

2 enlarges Ethereum’s capability to handle
+transactions ...

Impact of bytes-size

1 reduces deployment costs

2 maximum bytes-size allowed for deployment
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GASOL: GAS Optimization tooLkit

Gas and size superoptimization tool for EVM smart contracts

Stack

0x17
OR(AND(0xffffffff, s0),

AND(NOT(0xffffffff),

SLOAD(0x17)))
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GASOL: GAS Optimization tooLkit

Gas and size superoptimization tool for EVM smart contracts
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GASOL: GAS Optimization tooLkit

Gas and size superoptimization tool for EVM smart contracts

PUSH1 0x17
DUP1
SLOAD
PUSH4 0xffffffff
NOT
AND
PUSH4 0xffffffff
SWAP3

SWAP1
SWAP3
AND
SWAP2
SWAP1
SWAP2
OR
SWAP1

Stack

0x17
OR(AND(0xffffffff, s0),

AND(NOT(0xffffffff),

SLOAD(0x17)))

145 gas

25 bytes

127 gas

16 bytes
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Plan of the talk

Part I: Superoptimization framework (CAV’20, PLDI’24)

▶ Symbolic execution

▶ Rule-based simplification

▶ Optimal synthesis using Max-SMT

Part II: Extension to memory operations (TACAS’22, ISSTA’24)

Part III: Neural-guided superoptimization (IST’25)

Part IV: Proof-assistants to verify implementation (CAV’23)
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Part I: Basic Superoptimization
Framework
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PART I: Basic Superoptimization Algorithm
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1
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PART I: Basic Superoptimization Algorithm
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]

1

Builds the CFG and extracts the sequences from the basic blocks (splits
at jumps instructions and store operations)

LoopFreeSequences
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PART I: Basic Superoptimization Algorithm
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do
5: final ←Symbolic(seq, ini)
6: fin ←SimplificationRules(final)

1

Generates the symbolic state (initial state and final stack) from a given
block and applies simplification rules

Symbolic
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PART I: Basic Superoptimization Algorithm
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do
5: final ←Symbolic(seq, ini)
6: fin ←SimplificationRules(final)
7: bounds ←ComputeBounds(seq, fin)

1

Infers a bound for the number of elements located in the stack and the
number of instructions of the solution

ComputeBounds
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PART I: Basic Superoptimization Algorithm
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do
5: final ←Symbolic(seq, ini)
6: fin ←SimplificationRules(final)
7: bounds ← ComputeBounds(seq, fin)
8: sol, gains ← SearchOptimal(ini, fin, Obj, bounds)

1

Finds the best equivalent sequence for the selected objective within the
time limit using at Max-SMT solver

SearchOptimal
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PART I: Basic Superoptimization Algorithm
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do
5: final ←Symbolic(seq, ini)
6: fin ←SimplificationRules(final)
7: bounds ← ComputeBounds(seq, fin)
8: sol, gains ← SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 ∧ CoqChecker(seq, sol) then

10: NewSeq ← NewSeq.append((sol, gains))
11: else
12: NewSeq ← NewSeq.append((seq, 0))
13: end if
14: end for

1

We use the Coq proof-assistant to ensure the optimal solution produces
the same symbolic state as the initial state.

CoqChecker
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PART I: Basic Superoptimization Algorithm
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do
5: final ← Symbolic(seq, ini)
6: fin ← SimplificationRules(final)
7: bounds ← ComputeBounds(seq, fin)
8: sol, gains ← SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 ∧ CoqChecker(seq, sol) then

10: NewSeq ← NewSeq.append((sol, gains))
11: else
12: NewSeq ← NewSeq.append((seq, 0))
13: end if
14: end for
15: P′,G ← BuildOptimizedCode(NewSeq)
16: end procedure

1

There is a final step to reconstruct the bytecode from the optimized
sequences (e.g., recalculate jump addresses)

BuildOptimizedCode
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From Smart Contracts to Sequences
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)

2: Seqs ← LoopFreeSequences(P)

3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do
5: final ← Symbolic(seq, ini)
6: fin ← SimplificationRules(final)
7: bounds ← ComputeBounds(seq, fin)
8: sol, gains ← SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 ∧ CoqChecker(seq, sol) then

10: NewSeq ← NewSeq.append((sol, gains))
11: else
12: NewSeq ← NewSeq.append((seq, 0))
13: end if
14: end for
15: P′,G ← BuildOptimizedCode(NewSeq)
16: end procedure

1
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Symbolic Execution
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do

5: final ← Symbolic(seq, ini)

6: fin ← SimplificationRules(final)
7: bounds ← ComputeBounds(seq, fin)
8: sol, gains ← SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 ∧ CoqChecker(seq, sol) then

10: NewSeq ← NewSeq.append((sol, gains))
11: else
12: NewSeq ← NewSeq.append((seq, 0))
13: end if
14: end for
15: P′,G ← BuildOptimizedCode(NewSeq)
16: end procedure

1
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Rule-based Simplification
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do
5: final ← Symbolic(seq, ini)

6: fin ← SimplificationRules(final)

7: bounds ← ComputeBounds(seq, fin)
8: sol, gains ← SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 ∧ CoqChecker(seq, sol) then

10: NewSeq ← NewSeq.append((sol, gains))
11: else
12: NewSeq ← NewSeq.append((seq, 0))
13: end if
14: end for
15: P′,G ← BuildOptimizedCode(NewSeq)
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Compute Bounds

Bound on the number of instructions of the
solution:

Initial length of the block ⇒⇒ 16

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 18 / 44



Compute Bounds

Bound on the stack elements:

Max elements stored in the stack ⇒⇒ 4
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Searching for the Optimal Sequence
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do
5: final ← Symbolic(seq, ini)
6: fin ← SimplificationRules(final)
7: bounds ← ComputeBounds(seq, fin)

8: sol, gains ← SearchOptimal(ini, fin, Obj, bounds)

9: if gains > 0 ∧ CoqChecker(seq, sol) then
10: NewSeq ← NewSeq.append((sol, gains))
11: else
12: NewSeq ← NewSeq.append((seq, 0))
13: end if
14: end for
15: P′,G ← BuildOptimizedCode(NewSeq)
16: end procedure
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SMT Step 2: Modeling the Stack & Opcodes
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Max-SMT Encoding
Complete encoding

1 Constraints to describe the initial stack
I =

∧
0⩽α<k

(x0,α = sα)

2 Constraints to describe the target stack (previous flattening)

F =
∧

0⩽α<w

(xLbound,α = fα)

3 Constraints to describe effect of instructions on the stack
4 Non-stack operations considered as uninterpreted functions

hard =
∧

0⩽j<Lbound

0 ≤ tj ≤ Ins ∧ I ∧ F ∧ CPUSH(j) ∧ CSWAPk(j) ∧ ..
∧

f∈InsU

CU(j , f )

Optimization

▶ The cost of the solution can be expressed in terms of the cost of every
single instruction

▶ SMT formula ⇒ hard constraints
▶ Cost of every EVM instruction ⇒ soft constraints
▶ Two different criteria to optimize (original 145 gas and 25 bytes)

⋆ Gas model: 121 gas and 46 bytes
⋆ Bytes-size model:127 gas and 16 bytes
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Experimental Evaluation

Dataset: 30 most recent smart contracts compiled using version 8 of
solc, whose source code was available as of June 21, 2021

Compiled using solc version 0.8.9 with the optimization flag enabled.
Already optimized code!

Split in memory and store operations

Two objective functions: gas and byte size

The primary findings are:

1 We obtained size gains and gas gains for the 14% and 28% of the
analyzed blocks resp.

2 Bytes optimized: 2.64%
3 Gas optimized: 0.64%

⋆ ⇒⇒ 167.440,98 USD in one day
⋆ ⇒⇒ more than 61M USD in one year (assuming they are uniformly

distributed)
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Part II: Extension to Memory
Operations
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Motivation

Our basic framework can potentially achieve more savings by
including operations beyond stack operations

Idea: extend the basic framework to handle memory operations

Limitation: great overhead when modelling memory extensions in
superoptimization

▶ In fact, ebso and Souper superoptimizers avoid it

Proposal: leverage our basic two-staged method

▶ Detecting redundant memory accesses as simplification rules
▶ Extend the Max-SMT encoding using a dependency order among

instructions
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Superoptimization Algorithm With Memory
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do
5: final ←Symbolic(seq, ini)
6: fin ←SimplificationRules(final)
7: bounds ← ComputeBounds(seq, fin)
8: sol, gains ← SearchOptimal(ini, fin, Obj, bounds)
9: if gains > 0 ∧ CoqChecker(seq, sol) then

10: NewSeq ← NewSeq.append((sol, gains))
11: else
12: NewSeq ← NewSeq.append((seq, 0))
13: end if
14: end for
15: P′,G ← BuildOptimizedCode(NewSeq)
16: end procedure

1
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Rule-based Memory Simplifications

Notion of Conflict

Two memory instructions A and B have a conflict, denoted as conf(A,B) if:

(i) A is a store and B is a load and the positions they access might be the same;

(ii) A and B are both stores, the positions they modify might be the same, and
they store different values.

We have the following simplification rules:

If a STORE(p, v) is followed by a LOAD(p) instruction with no
conflicting STORE in between, replace the LOAD(p) with v

If two STORE instructions access the same position with no LOAD in
between, remove the first STORE

If there is a STORE(p, LOAD(p)) instruction and position p is not
modified by another STORE instruction, remove this instruction
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Memory Simplifications - Example
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Dependency Order

Dependency Order

Let A and B be two instructions in a sequence S . We say that B has to be
executed after A in S , denoted as A ⊏ B if conf(A,B).

i) There is no conflict between LOADS

ii) Dependencies are added after simplification

⇒Introduce variables lA, lB to track their positions

lA < lB where A ⊏ B

l10 < l44 where SLOAD10 ⊏ SSTORE44
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Experimental Evaluation

1 benchmark set:
▶ 30 latest verified smart contracts compiled with latest solc version at

the moment (0.8.9)

The primary findings are:

1 0.72% extra gas savings from the code optimized by solc (+0.1% from
basic version)

2 Gas savings breakdown:

⋆ 14.6% memory rules
⋆ 34.4% other rules
⋆ 51% Max-SMT encoding

3 0.72%⇒⇒ 185,754.82 USD in one day
4 0.1% ⇒⇒ 26,162.65 USD in one day
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Part III: Neural-Guided
Superoptimization
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Motivation

The previous extension results in larger blocks to analyze

▶ Pros: there are more potential optimization gains
▶ Cons: scalability poses a greater threat

⋆ The search space grow exponentially with the length of the sequence

Motivation

▶ Quite often the blocks to superoptimize are already optimal
▶ The initial bound is often larger than needed, resulting in an

unnecessary overhead

Proposal: incorporate machine learning techniques to tackle the
previous issues

▶ Our superoptimization framework provides us with an unlimited source
of information for the supervised learning

▶ There are patterns of code identify the previous behaviour
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Neural-Guided Superoptimization Algorithm
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do

5: optimize ← PredictOptimizable(s,Obj)

6: if optimize then

1

PredictOptimizable classifier that predicts two classes: already opti-
mal or not optimal

PredictOptimizable

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 34 / 44



Neural-Guided Superoptimization Algorithm
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
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1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do
5: optimize ←PredictOptimizable(s,Obj)
6: if optimize then
7: final ← Symbolic(seq, ini)
8: fin ← SimplificationRules(final)

9: bounds ← ComputeBounds(seq,fin)

1

ComputeBounds determines an upper bound and a lower bound on
the minimum number of instructions

ComputeBounds
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Neural-Guided Superoptimization Algorithm
Input: Program P, Objective Obj
Output: Optimized P′, Gain G
Ensures: P ≡ P′ ∧Obj(P′) ≤ Obj(P)

1: procedure Superoptimization(P,Obj)
2: Seqs ← LoopFreeSequences(P)
3: NewSq ←[ ]
4: for (seq, ini) ∈ Seqs do
5: optimize ←PredictOptimizable(s,Obj)
6: if optimize then
7: final ← Symbolic(seq, ini)
8: fin ← SimplificationRules(final)
9: bounds ← ComputeBounds(seq,fin)

10: sz ← PredictBlockSizeBound(seq, bounds,Obj)

11: sol, gains ← SearchOptimal(ini, fin, Obj, sz, bounds)
12: if gains > 0 ∧ CoqChecker(seq, sol) then
13: NewSeq ← NewSeq.append((sol, gains))
14: else
15: NewSeq ← NewSeq.append((seq, 0))
16: end if
17: end if
18: end for
19: P′,G ← BuildOptimizedCode(NewSeq)
20: end procedure

1

PredictBlockSizeBound regression model to predict the length needed
to compute an optimal sequence

PredictBlockSizeBound

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 34 / 44



Experimental Setup

Training:

▶ Blocks extracted from the last 5,000 verified smart contracts
downloaded in three different dates

▶ Avoid repeated blocks, selecting a representative for each bytecode
input representation

▶ 80% for training and 20% for validation

Experimental Setup:

▶ 100 most-called contracts deployed on Ethereum compiled with recent
versions of solc

⋆ 41,106,276 transactions in total

▶ We run different configurations that with combinations of:

⋆ Different timeouts n = 10, 5, 2, 1s
⋆ Selectively enabling each of the previous two models
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Experimental Evaluation
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% Time comparison among categories

PredictOptimizable:
▶ Preserves more than 96% of the savings!
▶ Time reduction up to 40% of the initial configuration
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PredictBlockSizeBound:
▶ Achieves > 100% of the gains consistently
▶ Greater percentage of gains when decreasing the time limit
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Experimental Evaluation
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Configuration chosen: (t = 2s, b+opt) with both models enabled
▶ Average optimization time per contract: ∼3 min
▶ $1.24 M savings on these contracts!
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Part IV: Verification of
Optimization Results
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Verification of Results

P P′

Optimizer
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Verification of Results

P P′

Optimizer

/

Comparator

We develop the comparator using the proof assistant’s (program-
ming) language, and prove its correctness.

Proof
Assistant

Specification
and Proofs

Code of the
Comparator

Spec: If it returns , then P and P ′ are semantically equivalent.
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Optimization Example

PUSH1 0x17, DUP1, SLOAD, PUSH4 0xffffffff, NOT, AND, PUSH4

0xffffffff, SWAP3, SWAP1, SWAP3, AND, SWAP2, SWAP1, SWAP2,OR, SWAP1

PUSH4 0xffffffff, AND PUSH32, 0xff...00000000, PUSH1 0x17, SLOAD,

AND, OR, PUSH1 0x17

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 39 / 44



Optimization Example

PUSH1 0x17, DUP1, SLOAD, PUSH4 0xffffffff, NOT, AND, PUSH4

0xffffffff, SWAP3, SWAP1, SWAP3, AND, SWAP2, SWAP1, SWAP2,OR, SWAP1

PUSH4 0xffffffff, AND PUSH32, 0xff...00000000, PUSH1 0x17, SLOAD,

AND, OR, PUSH1 0x17

s0

s0

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 39 / 44



Optimization Example

PUSH1 0x17, DUP1, SLOAD, PUSH4 0xffffffff, NOT, AND, PUSH4

0xffffffff, SWAP3, SWAP1, SWAP3, AND, SWAP2, SWAP1, SWAP2,OR, SWAP1

PUSH4 0xffffffff, AND PUSH32, 0xff...00000000, PUSH1 0x17, SLOAD,

AND, OR, PUSH1 0x17

s0

0x17

s0

s0

0xffffffff

s0

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 39 / 44



Optimization Example

PUSH1 0x17, DUP1, SLOAD, PUSH4 0xffffffff, NOT, AND, PUSH4

0xffffffff, SWAP3, SWAP1, SWAP3, AND, SWAP2, SWAP1, SWAP2,OR, SWAP1

PUSH4 0xffffffff, AND PUSH32, 0xff...00000000, PUSH1 0x17, SLOAD,

AND, OR, PUSH1 0x17

s0

0x17

s0

0x17

0x17

s0

#0x17

0x17

s0

0xffffffff

#0x17

0x17

s0

0x17
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s0

0xffffffff

s0 AND(0xffffffff , s0)

0x17
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AND(0xffffffff , s0) )
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Optimization Example
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0x17

OR( AND(0xffffffff , s0) ,

AND( NOT (0xffffffff ) ,#0x17))

s0

0xffffffff

s0 AND(0xffffffff , s0)

0x17

OR(AND( 0xf . . .00000000 ,#0x17),

AND(0xffffffff , s0) )

The final stacks are equivalent due to:

• Simplification rule: NOT (0xffffffff ) = 0xf . . .00000000.
• Comutativity of OR

Elvira Albert (UCM) Securely Optimized Smart Contracts November 12, 2025 39 / 44



Verification of Results

P1

P2

k

Symbolic
Execution

Rule
Optimization

Symbolic
States Eq.
Checker

/
ST1

ST2

ST ′
1

ST ′
2

Theorem opt_correct:
forall (p1 p2 : prog) (k: nat),
eq_chkr p1 p2 k = true →

forall (s : stack), length s = k → evmSem p1 s = evmSem p2 s.
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OR(AND( 0xf . . .00000000 ,#0x17),

AND(0xffffffff , s0) )

Theorem opt_correct:
forall (p1 p2 : prog) (k: nat),
eq_chkr p1 p2 k = true →

forall (s : stack), length s = k → evmSem p1 s = evmSem p2 s.
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Conclusions

We have introduced a framework for the optimization of smart
contracts based on formal methods and made this approach feasible
for practical use

Superoptimization has very interesting applications:

▶ Extra Layer of Optimization
▶ Learning New Peephole Optimizations
▶ Development of New Optimization Techniques

It has been used to improve the solc compiler optimization algorithm!

Four grants given by the Ethereum Foundation:

▶ Adaptation of GASOL into the solc compiler output and memory
extension enhancement (Finished!)

▶ Formal verification of optimization results (Foryu project, ongoing)
▶ Integration by means of a greedy algorithm into the Yul to EVM

compilation pipeline (Grey project, ongoing)
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Future Work

Adapt the framework to synthesize EVM bytecode from Yul code

Incorporate more precise information based on Data-Flow analysis

Study more applications of AI within superoptimization

Enable Associative-Commutative Reasoning in a SMT Solver to
produce an alternative encoding

Superoptimization of other Stack-Based Languages
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Thank you for your attention!
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